Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies
[Display omitted] •New water-soluble thiadiazole compounds as potent inhibitors for urease enzyme.•Reducing the ureolytic activity through some stable interactions with the functional residues in the active pocket.•Promising drug candidates for further structural optimizations and drug designing stu...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2022-05, Vol.272, p.120971, Article 120971 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•New water-soluble thiadiazole compounds as potent inhibitors for urease enzyme.•Reducing the ureolytic activity through some stable interactions with the functional residues in the active pocket.•Promising drug candidates for further structural optimizations and drug designing studies.
Two new water-soluble thiadiazole compounds are prepared and characterized with various techniques. These compounds, 5-amino-1,3,4-thiadiazole hydrochloride (1) and 5-amino-3-(N-propane-2-imine)-1,3,4-thiadiazole chloride salt (2) were synthesized via Mannich reaction, and characterized by microelemental analysis, and some spectroscopic means (FTIR, UV–Vis, 1H NMR, 13C NMR and mass), in addition to single-crystal X-ray diffraction for compound 2. DFT calculations were conducted to study their geometry optimization, vibrational spectra, MEP maps, and NBO analysis. In addition, TD-DFT calculations were performed to study their absorption spectra. The prepared compounds were tested against Jack beans urease enzyme (in vitro) to indicate their antiureolytic activity potency. The activity of the enzyme was measured under optimal conditions, before and after mixing with the prepared organic compounds. The results showed that both compounds have potentially inhibited the enzyme activity with respect to their IC50 values: 13.76 µM ± 0.15 for 1, and 18.81 µM ± 0.18 for 2. These values are even lower than that of thiourea (21.40 ± 0.21 µM) as a standard inhibitor. The inhibition activity of urease enzyme was confirmed by a Lineweaver-Burk plot. According to the kinetic parameters obtained from the Lineweaver–Burk plot, the inhibition of urease enzyme by compounds 1 and 2 seems to be non-competitive. Molecular docking studies of the prepared compounds 1 and 2 were performed in order to interpret the obtained biological results and to investigate their interactions with the urease enzyme active site. These studies reveal that compounds 1 and 2 are good candidates as inhibitors for urease enzyme. Moreover, compound 1 exhibits a higher promising inhibition activity. |
---|---|
ISSN: | 1386-1425 1873-3557 |
DOI: | 10.1016/j.saa.2022.120971 |