Colorimetric aflatoxins immunoassay by using silica nanoparticles decorated with gold nanoparticles
Nanomaterials-based colorimetric immunoassays showed increasing attention for monitoring different biomarkers because of their unique optical and electrical features. Here, a highly sensitive and selective optical sensor was described for the determination of different aflatoxins (AFs). Mesoporous s...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2021-02, Vol.246, p.118999, Article 118999 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nanomaterials-based colorimetric immunoassays showed increasing attention for monitoring different biomarkers because of their unique optical and electrical features. Here, a highly sensitive and selective optical sensor was described for the determination of different aflatoxins (AFs). Mesoporous silica nanoparticles (m-SNPs) with an average particle size of 40 nm were prepared by the sol-gel method and then decorated with gold nanoparticles (AuNPs). The Au NPs@m-SiNPs nanocomposite with an average particle size of 66 nm was modified with AFs antibodies. The assay includes the following steps: the Au NPs@m-SiNPs nanocomposite was immersed with AFs antibodies, and then the AFs-Ab/Au NPs@m-SiNPs was used as a probe for AFs detection. The interaction between the AFs-Ab/Au NPs@m-SiNPs and the AFs has resulted in a change in its color from pink to violet. Measurements are performed by absorptiometry at a wavelength of 425 nm. The immunoassay works in the concentration range from 1 ng·mL−1 to 75 ng·mL−1 AFB1 and has a limit of detection 0.16 ng·mL−1 (at S/N = 3). The assay was applied to the determination of AFs in different food samples spiked with AFS. Finally, the assay was used to detect AFs in a real sample, and the LC-MS technique was used to verify the results.
[Display omitted]
•Silica/gold nanocomposite modified with anti-AFB1 was used as AFB1 sensor.•UV–vis was used for monitoring different concentrations of AFB1.•The LOD of the AFB1-anti/Au/MSNPs found to be 0.16 ng/mL.•The developed system was used to detected AFB1 in foodstuff samples. |
---|---|
ISSN: | 1386-1425 1873-3557 |
DOI: | 10.1016/j.saa.2020.118999 |