Water as a probe to understand the traditional Chinese medicine extraction process with near infrared spectroscopy: A case of Danshen (Salvia miltiorrhiza Bge) extraction process

Extraction process is not only a critical manufacturing unit but also the initial process of various extracts and preparations. Taking the most extensive Chinese herbal medicine Danshen (Salvia miltziorrhiza Bge) as an example, salvianolic acid B (Sal B) is its main active pharmaceutical ingredient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2021-01, Vol.244, p.118854, Article 118854
Hauptverfasser: Gao, Lele, Zhong, Liang, Zhang, Jin, Zhang, Mengqi, Zeng, Yingzi, Li, Lian, Zang, Hengchang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extraction process is not only a critical manufacturing unit but also the initial process of various extracts and preparations. Taking the most extensive Chinese herbal medicine Danshen (Salvia miltziorrhiza Bge) as an example, salvianolic acid B (Sal B) is its main active pharmaceutical ingredient but lacks accurate characterization of the extraction process. As one of process analytical technologies, near-infrared spectroscopy (NIRS) technology has been widely applied for monitoring pharmaceutical extraction process. In most past studies, water spectral information is often eliminated due to its high absorption. However, this study proposed a method of using water spectrum to understand the whole extraction process and to quickly determine the content of Sal B. Principal component analysis (PCA) was first utilized to investigate the whole extraction process, then the reconstructed spectrum based on PCA was established and analyzed by Aquaphotomics, and finally the partial least squares regression (PLSR) quantitative model of Sal B was established. PCA and Aquaphotomics results showed the whole extraction process could be considered as a dynamic change from structure breaker to structure maker, and the dominance of highly H-bonded water structures increases with the extraction time. Also, the Sal B quantitative model with water spectrum showed higher accuracy and stability than other methods, which parameters (RMSEC, RMSECV, RMSEP, R2c, R2cv, R2p, RPD) were 0.2408 mg/mL, 0.2939 mg/mL, 0.2584 mg/mL, 0.9536, 0.9300, 0.9494, 4.6298, respectively, and the paired t-test showed that Sal B content measured by NIR and HPLC methods had no significant differences (p > 0.05). In conclusion, all result indicated that water can be used as a probe to understand the traditional Chinese medicine extraction process with NIRS. [Display omitted] •Water as a probe for monitoring extraction process of traditional Chinese medicine.•The first time using aquaphotomics to reveal mechanism of TCM extraction process.•Dynamic changes from structure breaker to structure maker with extraction time.•The dominance of highly H-bonded water structures increases with extraction time.•Quantification of Sal B using water spectrum showed higher accuracy and stability.
ISSN:1386-1425
1873-3557
DOI:10.1016/j.saa.2020.118854