Study on the shift of ultraviolet spectra in aqueous solution with variations of the solution concentration

In this study, we mainly focused on predictable regularities of the red shift of ultraviolet spectra for β-phenylethylamine (PEA), NaCl and NaOH in aqueous solution. The absorption peaks of the UV spectra near 191 nm of NaCl, NaOH and PEA in aqueous solution moved in the direction of a red shift whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2020-06, Vol.234, p.118259, Article 118259
Hauptverfasser: Tong, Angxin, Tang, Xiaojun, Zhang, Feng, Wang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we mainly focused on predictable regularities of the red shift of ultraviolet spectra for β-phenylethylamine (PEA), NaCl and NaOH in aqueous solution. The absorption peaks of the UV spectra near 191 nm of NaCl, NaOH and PEA in aqueous solution moved in the direction of a red shift while the molar absorption coefficient at the peak increased regularly with the increasing solution concentration. These shifts were obtained for solutions with concentrations ranging from 3.68 to 1000 mmol/L for NaCl, from 0.762 to 2000 mmol/L for NaOH, and from 0.0515 to 8.91 mmol/L for PEA. The plots of the logarithm of the solution concentration for NaCl and PEA versus the absorbance at 191 nm and at the peak were linear, and the plots of the logarithm of the solution concentration for NaCl and PEA versus the wavelength at the peak (shifted from 191 nm) were also linear. In addition, the plots of the logarithm of the solution concentration for NaOH that ranged from 0.762 to 1.96 mmol/L versus the absorbance at 191 nm and at the peak were linear as well as the plots of the logarithm of the solution concentration for NaOH that ranged from 1.96 to 2000 mmol/L versus the wavelength at the peak. The slopes of the absorbance at 191 nm of PEA, NaCl and NaOH were somewhat similar to the absorbance at the peak separately, whereas the slopes of the wavelengths at the peak were different from them. Finally, in order to obtain the predictable regularity of the red shift of the UV spectrum for the mixture, 22 ternary mixtures were prepared. The results indicate that the inhibiting effect of hydroxide ions (OH-) caused the wavelength near 206 nm to remain unchanged when the solution concentration of NaOH in the mixture was more than 0.762 mmol/L. [Display omitted] •The experiment scheme suppresses the absorption of atmosphere and water vapor.•The regularities of the red shift for NaCl, NaOH and PEA are obtained•The saturation effect of OH– makes the slopes of two regression equations different.•The regularity of the red shift of the UV spectrum for the mixture is obtained.•The OH– inhibited the red shift of the UV spectrum of the mixture.
ISSN:1386-1425
1873-3557
DOI:10.1016/j.saa.2020.118259