Infrared spectroscopy with multivariate analysis to interrogate the interaction of whole cells and secreted soluble exopolimeric substances of Pseudomonas veronii 2E with Cd(II), Cu(II) and Zn(II)
Extracellular polymeric substances (EPS) are bacterial products associated to cell wall or secreted to the liquid media that form the framework of microbial mats. These EPS contain functional groups as carboxyl, amino, hydroxyl, phosphate and sulfhydryl, able to interact with cations. Thus, EPS may...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2020-03, Vol.228, p.117820, Article 117820 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Extracellular polymeric substances (EPS) are bacterial products associated to cell wall or secreted to the liquid media that form the framework of microbial mats. These EPS contain functional groups as carboxyl, amino, hydroxyl, phosphate and sulfhydryl, able to interact with cations. Thus, EPS may be considered natural detoxifying compounds of metal polluted waters and wastewaters. In this work Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR) in combination with multivariate analysis (Principal Component Analysis-PCA-) were used to study the interaction of Cd(II), Cu(II) and Zn(II) and Pseudomonas veronii 2E cells, including bound EPS and cell wall, and its different soluble EPS fractions, previously characterized as Cd(II) ligands of moderate strength. Amino groups present in exopolysaccharide fraction were responsible for Zn(II) and Cu(II) complexation, while carboxylates chelated Cd(II). In lipopolysaccharide fraction, phosphoryl and carboxyl sites were involved in Cd(II) and Cu(II) binding, while Zn(II) interacted with amino groups. Similar results were obtained from cells.
These studies confirmed that FTIR-PCA is a rapid analytical tool to provide valuable information regarding the functional groups in biomolecules related to metal interaction. Moreover, a discrimination and identification of functional groups present in both EPS and cells that interacted with Cd(II), Zn(II) and Cu(II) was demonstrated.
[Display omitted]
•Non-destructive FTIR-PCA analyses elucidated the EPS-metal and bacteria-metal interactions.•Amino groups from ExP complexed Zn(II) and Cu(II), carboxylates chelated Cd(II).•Cd(II) and Cu(II)-LPS binding involved phosphoryl and carboxyl sites.•Zn(II) interacted with LPS amino groups. |
---|---|
ISSN: | 1386-1425 1873-3557 |
DOI: | 10.1016/j.saa.2019.117820 |