Biomolecular transitions and lipid accumulation in green microalgae monitored by FTIR and Raman analysis
Fourier transform infrared (FTIR) and Raman spectroscopic techniques were employed to analyze the biomolecular transitions and lipid accumulation in three freshwater green microalgal species, Monoraphidium contortum (M. contortum), Pseudomuriella sp. and Chlamydomonas sp. during various phases of th...
Gespeichert in:
Veröffentlicht in: | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Molecular and biomolecular spectroscopy, 2020-01, Vol.224, p.117382, Article 117382 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fourier transform infrared (FTIR) and Raman spectroscopic techniques were employed to analyze the biomolecular transitions and lipid accumulation in three freshwater green microalgal species, Monoraphidium contortum (M. contortum), Pseudomuriella sp. and Chlamydomonas sp. during various phases of their growth. Biomolecular transitions and lipid [hydrocarbons, triacylglycerides (TAGs)] accumulation within the microalgal cells were identified using second derivatives of the FTIR absorption spectroscopy. Second derivative analysis normalized and resolved the original spectra and led to the identification of smaller, overlapping bands. Both relative and absolute content of lipids were determined using the integrated band area. M. contortum exhibited higher accumulation of lipids than the other two species. The integrated band area of the vibrations from saturated (SFA) and unsaturated lipids (UFA) enabled quantification of fatty acids. The percentage of SFA and UFA was determined using GC, FTIR and Raman spectroscopy. From the spectral data, the order of increasing concentration of SFA among the three microalgal species was M. contortum > Chlamydomonas sp. >Pseudomuriella sp. The spectral results on fatty acids were consistent with the separation of lipids by gas chromatography. The results emphasized the significance of FTIR and Raman spectroscopic methods in monitoring the biomolecular transitions and rapid quantification of lipids, without the need for extraction of lipids.
[Display omitted]
•FTIR and Raman spectra help monitor physiological changes in three green microalgae•Second derivative FTIR spectra revealed biomolecular transitions and lipid accumulation•Second derivative analysis enabled relative and absolute content of hydrocarbons and TAGs•Quantification of Fatty acid analysis by FTIR and Raman was consistent with GC |
---|---|
ISSN: | 1386-1425 1873-3557 |
DOI: | 10.1016/j.saa.2019.117382 |