Evaluating floating photovoltaics (FPVs) potential in providing clean energy and supporting agricultural growth in Vietnam
Vietnam's promising economic growth has led to energy shortage, growing coal imports, and increasing carbon emissions. The country's electricity demand annual growth rate has been 12% in recent years and is projected to be 8–9% by 2030. In Vietnam 40% of the land is dedicated to agricultur...
Gespeichert in:
Veröffentlicht in: | Renewable & sustainable energy reviews 2022-11, Vol.169, p.112925, Article 112925 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vietnam's promising economic growth has led to energy shortage, growing coal imports, and increasing carbon emissions. The country's electricity demand annual growth rate has been 12% in recent years and is projected to be 8–9% by 2030. In Vietnam 40% of the land is dedicated to agriculture and thousands of inland water bodies are used for agriculture/aquaculture. Utilising even a small portion of them for Floating Photovoltaics (FPVs) would mitigate land-use conflicts and benefits agriculture and aquaculture. To demonstrate FPVs' potential, we selected a hydropower dam reservoir in the North and six irrigation reservoirs in the South. System Advisor Model (SAM) software was used to simulate the electricity generated if we cover 1%, 5%, and 10% of surfaces of these reservoirs. The results show a potential capacity close to 1 GWp and annual potential generation of 1.4 TWh if 1% of these surfaces were covered by FPVs. We also evaluated FPVs potential for four different types of water bodies in Vietnam: Lake, Lagoon, River and Without Classification. The results showed that the potential capacity, considering use of only of 1% of these water surfaces for FPVs is 3.7 GWp, and provides 5385 GWh generation, which highlights the significant contribution that FPVs can make to the renewable energy sector in this country. However, FPVs face some socio-technical barriers, including regulatory ambiguity about water rights, uncertainty about economic policies and limited information about their environmental impacts that could hamper the expansion of this technology, and need to be addressed through further research.
[Display omitted]
•Vietnam increasing energy demand has led to growing coal imports.•Population, geography, and land-use make allocating lands to renewables challenging.•Floating photovoltaics can significantly improve Vietnam's renewable energy sector.•We used System Advisor Model (SAM) to show significant potential of FPVs in Vietnam.•FPVs face sociotechnical barriers & regulatory ambiguity that need to be addressed. |
---|---|
ISSN: | 1364-0321 1879-0690 |
DOI: | 10.1016/j.rser.2022.112925 |