Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel
Biodiesel has a lower oxidation stability index (OSI) than mineral diesel fuel. Its consequential oxidation products and deteriorated physical and chemical properties of fuel are associated with engine operation challenges such as the formation of insoluble gums that can plug fuel filters. Given the...
Gespeichert in:
Veröffentlicht in: | Renewable & sustainable energy reviews 2020-03, Vol.119, p.109588, Article 109588 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biodiesel has a lower oxidation stability index (OSI) than mineral diesel fuel. Its consequential oxidation products and deteriorated physical and chemical properties of fuel are associated with engine operation challenges such as the formation of insoluble gums that can plug fuel filters. Given the fact that oxidation leads to barriers for commercial use of biodiesel, addition of appropriate antioxidants into biodiesel is a promising and cost-effective approach to overcome this challenge. Although synthetic antioxidants such as propyl gallate (PG) are frequently used to counter the oxidation process of biodiesel, PG is a designated carcinogen. In light of that, this study was conducted aiming at introducing walnut husk methanolic extract (WHME) as a more sustainable antioxidant to replace PG in waste cooking oil (WCO) methyl esters. Moreover, to facilitate the commercialization of the new product, a comprehensive environmental investigation and comparison with the conventional counterpart, i.e., PG, was performed using life cycle assessment (LCA) approach. To enhance the eco-friendly features of the natural antioxidant, a solar photovoltaic-driven extraction process based on methanol (as reagent) was used in extracting polyphenols from walnut husk. The results showed that the induction period of WCO methyl esters was prolonged from 1.2 h to more than 3 h (meeting the ASTM D6751 standards) using 5000 ppm and 250 ppm of WHME and PG, respectively. More specifically, 20-fold more natural antioxidants would be required to meet the international standards. However, since walnut-producing countries are responsible for 42.4% of global biodiesel production on one hand and the cost-effectiveness of walnut husks on the other hand, their valorization could attract the attention of the global biodiesel industry. Moreover, this study highlights the considerable environmental and health benefits of turning this bio-waste product into a value-added antioxidant fuel additive. The LCA results showed that the developed bio-antioxidant was more effective in different damage categories compared with PG, i.e., 0.32% in ecosystem quality, 12.13% in human health, 8.37% in climate change, and 614% in resource. Overall, the WHME obtained through solar photovoltaic-driven extraction process could outcompete PG from the environmental perspective.
[Display omitted]
•Solar photovoltaic-driven walnut husk extract was used as biodiesel antioxidant.•The health aspects of waste-oriented b |
---|---|
ISSN: | 1364-0321 1879-0690 |
DOI: | 10.1016/j.rser.2019.109588 |