The effect of artificial intelligence evolving on hyperspectral imagery with different signal-to-noise ratio, spectral and spatial resolutions
Hyperspectral images are increasingly being used in classification and identification. Data users prefer hyperspectral imagery with high spatial resolution, finer spectral resolution, and high signal-to-noise ratio (SNR). However, tradeoffs exist in these core parameters in imagery acquired by diffe...
Gespeichert in:
Veröffentlicht in: | Remote sensing of environment 2024-09, Vol.311, p.114291, Article 114291 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hyperspectral images are increasingly being used in classification and identification. Data users prefer hyperspectral imagery with high spatial resolution, finer spectral resolution, and high signal-to-noise ratio (SNR). However, tradeoffs exist in these core parameters in imagery acquired by different hyperspectral sensor systems. Data users may find it difficult to utilize all the advantages of hyperspectral imagery. How to select hyperspectral data with optimal parameter configuration has been one of the essential issues for data users, which also affects the back-end applications. With advancements in computer science, various artificial intelligence algorithms from conventional machine learning to deep learning have been utilized for hyperspectral images classification and identification. Few researchers study the mechanism between the core parameters of hyperspectral imaging spectrometers and advanced artificial intelligence algorithms, which affects the application efficiency and accuracy. In this paper, we delved into the evolution of machine learning and deep learning models applied to imagery acquired by different hyperspectral sensor systems having different SNR, spectral, and spatial resolutions. Additionally, we also considered the tradeoffs among the core parameters of hyperspectral imagers. We used two conventional machine learning models, including the classification and regression tree (CART) and random forest (RF), two deep learning methods based on convolution neural network architectures—3D convolutional neural network (3D-CNN) and hamida, and two deep learning methods based on vision transformers architectures—transformer models vision transformer (VIT) and robust vision transformer (RVT), to compare the characteristics of different algorithms. In addition, five hyperspectral datasets with different species categories and scene distributions and aggregated datasets with different spatial resolutions, spectral resolutions, and SNRs were used to validate our study. The experimental results indicate that: (1) The overall accuracy (OA) using CART, RF, 3D-CNN, and VIT models decreased with coarser spectral resolution, but almost remained unchanged using the RVT classifier. The number of class and classification species affect the results. (2) The influence of spatial resolution on classification accuracy is related to the scene complexity, target size, and classification purpose. The coarser spatial resolution can achieve higher OA than th |
---|---|
ISSN: | 0034-4257 |
DOI: | 10.1016/j.rse.2024.114291 |