Autocatalytic formed bamboo-like N-doped carbon nanotubes encapsulated with Co nanoparticles as highly efficient catalyst for activation of peroxymonosulfate toward degradation of tetracycline

Co-based catalysts activated peroxymonosulfate (PMS) for organic pollutants degradation has been extensively studied. Co dissolution of Co-based catalysts would result in secondary environmental contamination. Co autocatalysis the formation of bamboo-like N-doped carbon nanotubes to confine Co nanop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reactive & functional polymers 2023-02, Vol.183, p.105482, Article 105482
Hauptverfasser: Lu, Yingying, Li, Yong-Ke, Huang, Chenxi, Chen, Rui, Chen, Yiping, Wang, Chengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Co-based catalysts activated peroxymonosulfate (PMS) for organic pollutants degradation has been extensively studied. Co dissolution of Co-based catalysts would result in secondary environmental contamination. Co autocatalysis the formation of bamboo-like N-doped carbon nanotubes to confine Co nanoparticles (Co NPs). Herein, the N-doped carbon nanotubes encapsulated Co (Co@NCTs) were successfully synthesized through a one-step high-temperature calcination method at different temperatures. Co@NCTs-800 exhibited excellent catalytic performance, the degradation efficiency of tetracycline (TC) could reach 94.5% with only 0.05 g/L catalyst in activating PMS. In addition, the encapsulation of carbon nanotubes inhibits the dissolution of Co, the Co2+ dissolution was 0.0594 mg/L in 40 min in the system of Co@NCTs-800/PMS. Free radical quenching tests, electron paramagnetic resonance, and electrochemical measurements revealed that the non-radical route was dominated by tetracycline degradation, with singlet oxygen (1O2) and electron transfer as the principal active species. The N-doped carbon nanotubes can effectively encapsulate Co, which not only reduces the leaching of Co but also play a synergistic role with Co in degrading organic pollutants. In addition to this, the degradation mechanism and pathways of TC were further investigated. The Co@NCTs-800/PMS system was also able to successfully decompose a variety of organic contaminants, demonstrating that it has real application potential in wastewater. [Display omitted] •Low-dose Co@NCTs-800 can efficiently activate PMS for TC degradation.•Co@NCTs-800 limited the leaching of cobalt.•Tetracycline degradation mechanisms and pathway were investigated.•Co@NCTs-800 activated persulfates via nonradical mechanisms.•Co@NCTs-800/PMS system showed high efficiency in real water and other pollutants.
ISSN:1381-5148
DOI:10.1016/j.reactfunctpolym.2022.105482