Evaluation of radiation exposure for patients undergoing computed tomography perfusion procedure for acute ischemic stroke
Computed tomography perfusion (CTP) is contrast-enhanced dynamic imaging of the brain utilized to assess the blood flow volume and transmit time to the brain's parenchyma. Stroke is the world's second greatest cause of mortality, accounting for 11% of all deaths, and a major cause of disab...
Gespeichert in:
Veröffentlicht in: | Radiation physics and chemistry (Oxford, England : 1993) England : 1993), 2022-11, Vol.201, p.110447, Article 110447 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Computed tomography perfusion (CTP) is contrast-enhanced dynamic imaging of the brain utilized to assess the blood flow volume and transmit time to the brain's parenchyma. Stroke is the world's second greatest cause of mortality, accounting for 11% of all deaths, and a major cause of disability. Previous studies reported a high radiation dose per procedure with an eye lens equivalent dose (mGy) ranging from 81.0 mGy to 348.0 mGy. This study's objective is to evaluate patients exposure during CTP procedures. Materials and methods. Three hundred twenty patients with ischemic stroke underwent CTP were examined at King Fahad Medical City (KFMC). The imaging protocol consists of plain CT, CT angiography (CTA), CTP, Angiography. The volume CT Dose Index (CTDIvol, mGy) and dose length product (DLP, mGy.cm) were registered from the PACS system. The effective dose calculation (E, mSv) was extrapolated using computer software. For the CTP procedure, the mean and range of DLP (mGy.cm) for the complete procedure, CT brain, CTA, CTA digital subtraction angiography (DSA), and CTP were 1045 (105–3072), 843 (277–1530), 470.5 (210–1356), 238.8 (105–439), 2712(2012–3072) examinations, respectively. The mean and range of the effective dose (mSv) and CTDIvol (mGy) were 13.2 (10.6–17.1), 80.5 (6.11–256), in that order. The patients' doses showed wide variation due to the selection of multiple phases of acquisition and exposure factors. The dose is higher than most previous studies. Radiation dose optimization is recommended by establishing diagnostic reference level (DRL), proper CT machine setting, and increasing operators' awareness regarding radiation risks.
•Multimodal computed tomography (CT) radiation doses were quantified for 72 patients.•Multimodal consists of noncontrast, angiography, digital subtraction angiography, and Perfusion CT procedure.•Multimodal CT brain procedure resulted in an effective dose of 6–15 mSv.•The use of the CTP- DSA procedure exposes the patients to unnecessary radiation. |
---|---|
ISSN: | 0969-806X 1879-0895 |
DOI: | 10.1016/j.radphyschem.2022.110447 |