Testing a proposed new chronology for the Jasmund Glacitectonic Complex (SW Baltic Sea): No indication of incipient deformation during MIS 3

Weichselian advances of the Scandinavian Ice Sheet have generated several glacitectonically deformed structures in the southwestern Baltic Sea area. One example is the 100 km2 large Jasmund Glacitectonic Complex (JGC), which was formed proglacially and consists of two subparallel-orientated sets of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quaternary geochronology 2022-05, Vol.70, p.101299, Article 101299
Hauptverfasser: Kenzler, Michael, Krauß, Nikolas, Hüneke, Heiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weichselian advances of the Scandinavian Ice Sheet have generated several glacitectonically deformed structures in the southwestern Baltic Sea area. One example is the 100 km2 large Jasmund Glacitectonic Complex (JGC), which was formed proglacially and consists of two subparallel-orientated sets of composite ridges that represent a northern and southern structural complex. The two-part morphological structure of the JGC suggests a formation by two ice advances, one approaching from NE and one from SE direction. So far, this divided structure has been assumed to have been formed by short-time ice-front oscillations during an MIS 2 ice advance. However, based on their recently published ice dynamic model for MIS 3 and the available age data from Jasmund, lüthgens et al. (2020) propose a chronological reinterpretation of the JGC development, according to which two distinct ice advances during early and late MIS 3 formed the JGC. In order to test this novel stratigraphical model for the JGC formation, five OSL samples were taken from fluvial and lacustrine deposits at a key section near Glowe (NW Jasmund). The investigated succession is divided into pre-kinematic sediments, deposited before the glacitectonic deformation, and post-kinematic sediments, deposited after the deformation. Our results show that the youngest dated pre-tectonic sediment has a burial age between ∼40 and 34 ka, which rules out a glacitectonic deformation during an early MIS 3 ice advance (∼60–50 ka). In addition, by reviewing the existing age data set, a development of the JGC during an early and late MIS 3 advance of the SIS must be rejected. Instead, our data confirm the genesis of the JGC during MIS 2.
ISSN:1871-1014
1878-0350
DOI:10.1016/j.quageo.2022.101299