RAS/RAF mutations and their associations with epigenetic alterations for distinct pathways in Vietnamese colorectal cancer

KRAS, NRAS, and BRAF are potential tumor-driven genes that are involved in the RAS/RAF/MAPK signaling pathway. RAS/RAF mutations importantly contribute to colorectal tumorigenesis since they remain the activated status of downstream pathways without regulation of the upstream EGFR signal. However, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pathology, research and practice research and practice, 2020-04, Vol.216 (4), p.152898, Article 152898
Hauptverfasser: Ta, To Van, Nguyen, Quang Ngoc, Chu, Ha Hoang, Truong, Van-Long, Vuong, Linh Dieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:KRAS, NRAS, and BRAF are potential tumor-driven genes that are involved in the RAS/RAF/MAPK signaling pathway. RAS/RAF mutations importantly contribute to colorectal tumorigenesis since they remain the activated status of downstream pathways without regulation of the upstream EGFR signal. However, it has not been unclear how epigenetic alterations involved in colorectal tumorigenesis mediated by KRAS, NRAS, or BRAF mutations. Therefore, in this study, we investigated the frequency and distribution of KRAS/NRAS/BRAF mutations in Vietnamese colorectal cancer (CRC) and explored the relationship between genetic and epigenetic abnormalities in 156 tumors of CRC. Somatic mutations of KRAS (exon 2, codon 12/13; exon 3, codon 61), NRAS (exon 2, codon 12/13; exon 3, codon 61), and BRAF (exon 15, codon 600) was determined by Cobas® KRAS Mutation Test, Therascreen NRAS Pyro Kit and Cobas® 4800 BRAF V600 Mutation Test, respectively. Methylation status of BRCA1, MLH1, MGMT, p16, RASSF1A, and APC was detected by methylation-specific PCR. Distribution of each abnormality in clinicopathological features was also analyzed. Results showed the mutation rates of KRAS, NRAS, and BRAF were 41.0 %, 9.6 %, 8.3 % respectively, while the methylation rates of BRCA1, MLH1, MGMT, p16, RASSF1A, and APC were 16.7 %, 16.7 %, 32.7 %, 30.1 %, 30.1 %, and 37.2 % respectively. The distribution of KRAS mutation was mutually exclusive against that of NRAS (p 
ISSN:0344-0338
1618-0631
DOI:10.1016/j.prp.2020.152898