Controlled radical polymerization in dispersed systems for biological applications
[Display omitted] Polymeric nanoparticles show great promise in a range of biomedical applications, improving pharmacokinetic properties, dose requirements and immune response in drug delivery and bioimaging. Common synthesis techniques such as self-assembly, while prevalent, are unscalable and requ...
Gespeichert in:
Veröffentlicht in: | Progress in polymer science 2020-03, Vol.102, p.101209, Article 101209 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
Polymeric nanoparticles show great promise in a range of biomedical applications, improving pharmacokinetic properties, dose requirements and immune response in drug delivery and bioimaging. Common synthesis techniques such as self-assembly, while prevalent, are unscalable and require the use of organic solvents, or extensive purification. In contrast, recent developments in dispersed state reversible deactivation radical polymerization allow the preparation of well-defined nanomaterials in fully aqueous environments often achieving full monomer conversion, and thus direct use in biological environments without purification in high quantities. These techniques have allowed the preparation of a variety of nanoparticle architectures (nanogel, latex, micelle, nanoworms, vesicles), using ATRP, RAFT and NMP, which in many cases perform significantly better than free radical alternatives. This review focuses on the biological relevance of RDRP in dispersed systems, covering miniemulsion, dispersion, suspension and emulsion polymerizations. |
---|---|
ISSN: | 0079-6700 1873-1619 |
DOI: | 10.1016/j.progpolymsci.2020.101209 |