Photonuclear reactions—From basic research to applications

Nuclear reactions induced by photons play a vital role for very different aspects of basic research and applications in physics. They are a key ingredient for the synthesis of nuclei in the Universe and provide, due to the selectivity and the model-independence of the reaction mechanism, an extremel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in particle and nuclear physics 2022-01, Vol.122, p.103903, Article 103903
Hauptverfasser: Zilges, A., Balabanski, D.L., Isaak, J., Pietralla, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nuclear reactions induced by photons play a vital role for very different aspects of basic research and applications in physics. They are a key ingredient for the synthesis of nuclei in the Universe and provide, due to the selectivity and the model-independence of the reaction mechanism, an extremely valuable probe for researchers. The penetrability of photons in the MeV energy range makes them, in addition, an ideal tool for meeting various societal challenges. The last two decades saw a rapid development of advanced photon sources and detection methods for photonuclear reaction products. Bremsstrahlung and quasi-monoenergetic photon beams with unprecedented intensity and quality combined with state-of-the-art detector technology paved the way for new scientific discoveries and technological applications. This review focuses on a comprehensive overview of the most important developments since the turn of the millennium restricted to the energy range between atomic and hadronic degrees of freedom. This includes a description of the formalism of photonuclear reactions below and above the particle-separation threshold. The most important techniques used to generate photon beams in the MeV energy range are presented along with selected facilities and instrumentation for diagnostics and for the analysis of photonuclear reactions. The power of photons to probe the atomic nucleus is exemplified in a number of selected examples from fundamental and applied science. New developments, facilities, and ideas promise a vivid future for photonuclear physics.
ISSN:0146-6410
1873-2224
DOI:10.1016/j.ppnp.2021.103903