Investigation of granular dynamics in a continuous blender using the GPU-enhanced discrete element method

Continuous powder blending is an essential operation during continuous pharmaceutical manufacturing. However, the complex granular dynamics in the blender is still poorly understood. This study employs a graphic processor unit (GPU) enhanced discrete element method (DEM) to analyse the granular dyna...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2022-11, Vol.412, p.117968, Article 117968
Hauptverfasser: Zheng, Chao, Li, Liang, Nitert, Bernardus Joseph, Govender, Nicolin, Chamberlain, Thomas, Zhang, Ling, Wu, Chuan-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Continuous powder blending is an essential operation during continuous pharmaceutical manufacturing. However, the complex granular dynamics in the blender is still poorly understood. This study employs a graphic processor unit (GPU) enhanced discrete element method (DEM) to analyse the granular dynamics in a continuous blender. Numerical results indicate that only a small fraction of powder distributes in the upper region of the blender, while most of that distributes in the middle and lower regions. Besides, a higher impeller speed leads to a smaller hold-up mass and a shorter mean residence time. Interestingly, the maximum number of blade passes is achieved at an intermediate impeller speed. There are two distinct regimes during continuous blending: i) a shearing regime at low impeller speeds; and ii) a dynamic regime at high impeller speeds. This study demonstrates that the GPU-enhanced DEM can be a robust tool for analysing powder flow during continuous pharmaceutical manufacturing. [Display omitted] •GPU-enhanced DEM analysis on the full-scale continuous blending is performed.•Impeller speed has a significant impact on the powder flow in the inclined blender.•At steady-state, powder mainly distributes in the middle and bottom zones of blender.•Maximum number of blade passes can be achieved at an intermediate impeller speed.
ISSN:0032-5910
1873-328X
DOI:10.1016/j.powtec.2022.117968