Accurate energy yield simulation of a carport system using the ray-tracing method
In this study, a carport system configured with monofacial and bifacial photovoltaic (PV) modules was installed in South Korea, and energy production was monitored for one year through measurements and simulations. The energy yields of the installed modules were evaluated using the ray-tracing metho...
Gespeichert in:
Veröffentlicht in: | Journal of Power Sources Advances 2025-01, Vol.31, p.100164, Article 100164 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, a carport system configured with monofacial and bifacial photovoltaic (PV) modules was installed in South Korea, and energy production was monitored for one year through measurements and simulations. The energy yields of the installed modules were evaluated using the ray-tracing method, which accurately traces the path of sunlight entering the modules, considering shadows and reflections from the ground and cars near the carport. Loss models were developed to reduce the discrepancy between measured and simulated results, utilizing both observed weather data and Meteonorm data to increase accuracy. The energy yield showed an average monthly difference of 3.25 % for the monofacial system and 3 % for the bifacial system, indicating the high accuracy of the developed simulation models. The simulation suggested that energy production could be further increased by 15 % by adjusting the direction and tilt angle of the modules on the carport. These results demonstrate the potential of the developed method for predicting the energy yield of various PV systems, and the findings of this study provide fundamental data for the efficient design and operation of PV power systems in South Korea.
•A carport system with monofacial and bifacial photovoltaic modules was installed.•Energy production was monitored for 1 year through measurements and simulations.•Carport system can increase energy yield by changing modules' direction and tilt. |
---|---|
ISSN: | 2666-2485 2666-2485 |
DOI: | 10.1016/j.powera.2024.100164 |