Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors
Hydrogel-based flexible wearable sensors have appeared to great interest owing to their great potential in medical monitoring, electronic skin, and artificial intelligence. Nevertheless, it is still a considerable challenge to fabricate multifunctional hydrogel sensors with good flexibility, self-ad...
Gespeichert in:
Veröffentlicht in: | Polymer (Guilford) 2022-09, Vol.256, p.125270, Article 125270 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hydrogel-based flexible wearable sensors have appeared to great interest owing to their great potential in medical monitoring, electronic skin, and artificial intelligence. Nevertheless, it is still a considerable challenge to fabricate multifunctional hydrogel sensors with good flexibility, self-adhesion, self-healing, antibacterial, and excellent sensing properties at the same time. In this work, a dual-network (DN) conductive hydrogel was prepared by modified sodium alginate/polyvinyl alcohol/acacia mangium tannin/carbon nanotubes (SA-PBA/PVA/AMT/CNTs), which exhibited high stretchability (717%), biocompatibility, wide adhesion ability, efficient self-healing performance (self-healing efficiency reaches 99.67%), good antibacterial property and considerable sensitivity (in the strain range of 250–525%, gauge factor reaches 8.89). When the DN conductive hydrogel was constructed as a flexible strain sensor, it can be used to monitor various large and subtle human motions. To further endow the DN hydrogel with environmental tolerance, glycerol was introduced into the hydrogel to obtain an anti-freezing and water-retaining organohydrogel. Interestingly, the obtained organohydrogel permanently maintained good adhesion, self-healing, antibacterial, sensitivity, and sensing properties at low temperatures (−24 °C) or room temperature. In summary, the present work provides a new strategy for the preparation of multifunctional DN organohydrogel as wearable electronics.
A novel multifunctional dual-network conductive organohydrogel with considerable ductility, self-adhesion, self-healing, biocompatibility, antibacterial, high sensitivity, anti-freezing and moisturizing properties was fabricated as strain sensor for persistently monitoring of human motion at room or low temperature conditions. [Display omitted]
•Acacia mangium tannin was used for the first time to endow hydrogel with adhesion.•Acacia mangium tannin as reductant and stabilizer for the first time for AgNPs.•SA-PBA/PVA/CNTs hydrogel has adhesive, self-healing, and antibacterial property.•Hydrogel sensor has good sensitivity, stability, durability, and sensing property.•Hydrogel strain sensor can monitor human motions at low and room temperatures. |
---|---|
ISSN: | 0032-3861 1873-2291 |
DOI: | 10.1016/j.polymer.2022.125270 |