Nonlocal KdV equations
•One-soliton solution of the symmetrical Hirota-Satsuma (HS) system is obtained.•Integrable local and nonlocal reductions of the HS system are given.•All the reductions of the HS system give a kind of KdV equation; standard KdV, complex KdV, and nonlocal KdV equations.•By using the reduction formula...
Gespeichert in:
Veröffentlicht in: | Physics letters. A 2020-12, Vol.384 (35), p.126894, Article 126894 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •One-soliton solution of the symmetrical Hirota-Satsuma (HS) system is obtained.•Integrable local and nonlocal reductions of the HS system are given.•All the reductions of the HS system give a kind of KdV equation; standard KdV, complex KdV, and nonlocal KdV equations.•By using the reduction formulas, one-soliton solutions of the local and nonlocal reduced equations are obtained.
Writing the Hirota-Satsuma (HS) system of equations in a symmetrical form we find its local and new nonlocal reductions. It turns out that all reductions of the HS system are Korteweg-de Vries (KdV), complex KdV, and new nonlocal KdV equations. We obtain one-soliton solutions of these KdV equations by using the method of Hirota bilinearization. |
---|---|
ISSN: | 0375-9601 1873-2429 |
DOI: | 10.1016/j.physleta.2020.126894 |