Nonlocal KdV equations

•One-soliton solution of the symmetrical Hirota-Satsuma (HS) system is obtained.•Integrable local and nonlocal reductions of the HS system are given.•All the reductions of the HS system give a kind of KdV equation; standard KdV, complex KdV, and nonlocal KdV equations.•By using the reduction formula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics letters. A 2020-12, Vol.384 (35), p.126894, Article 126894
Hauptverfasser: Gürses, Metin, Pekcan, Aslı
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•One-soliton solution of the symmetrical Hirota-Satsuma (HS) system is obtained.•Integrable local and nonlocal reductions of the HS system are given.•All the reductions of the HS system give a kind of KdV equation; standard KdV, complex KdV, and nonlocal KdV equations.•By using the reduction formulas, one-soliton solutions of the local and nonlocal reduced equations are obtained. Writing the Hirota-Satsuma (HS) system of equations in a symmetrical form we find its local and new nonlocal reductions. It turns out that all reductions of the HS system are Korteweg-de Vries (KdV), complex KdV, and new nonlocal KdV equations. We obtain one-soliton solutions of these KdV equations by using the method of Hirota bilinearization.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2020.126894