Fuzzy Lyapunov exponents placement for chaos stabilization
This paper presents a novel chaos stabilization method using fuzzy Lyapunov exponents placement. An adaptive neuro-fuzzy inference system (ANFIS) learning method is used to estimate the unknown parameters of the chaotic system, and a nonlinear fuzzy feedback controller is designed to place the Lyapu...
Gespeichert in:
Veröffentlicht in: | Physica. D 2023-03, Vol.445, p.133648, Article 133648 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a novel chaos stabilization method using fuzzy Lyapunov exponents placement. An adaptive neuro-fuzzy inference system (ANFIS) learning method is used to estimate the unknown parameters of the chaotic system, and a nonlinear fuzzy feedback controller is designed to place the Lyapunov exponents of the system in the desired location to remove chaotic conduct. The proposed approach is robust to external disturbances and provides a higher performance than the current chaos stabilization methods, as demonstrated by numerical examples.
•A chaos stabilization method proposed using fuzzy Lyapunov exponent placement.•Fuzzy feedback controller places the Lyapunov exponents in the desired location.•ANFIS learning method used to estimate the unknown parameters of the chaotic system.•Proposed method provides fast, robust means for stabilizing the chaotic systems. |
---|---|
ISSN: | 0167-2789 1872-8022 |
DOI: | 10.1016/j.physd.2023.133648 |