On the algebraic solutions of the Painlevé-III (D7) equation

The D7 degeneration of the Painlevé-III equation has solutions that are rational functions of x1/3 for certain parameter values. We apply the isomonodromy method to obtain a Riemann-Hilbert representation of these solutions. We demonstrate the utility of this representation by analyzing rigorously t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2022-12, Vol.441, p.133493, Article 133493
Hauptverfasser: Buckingham, R.J., Miller, P.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The D7 degeneration of the Painlevé-III equation has solutions that are rational functions of x1/3 for certain parameter values. We apply the isomonodromy method to obtain a Riemann-Hilbert representation of these solutions. We demonstrate the utility of this representation by analyzing rigorously the behavior of the solutions in the large parameter limit. •The algebraic solutions of the degenerate D7 type Painlevé-III equation are studied.•A Riemann-Hilbert representation of these solutions is deduced by the isomonodromy method.•That representation is used to study the solutions in the large-parameter limit.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2022.133493