A convergence criterion for the unstable manifolds of the MacKay approximate renormalisation

We give an explicit arithmetical condition which guarantees the existence of the unstable manifold of the MacKay approximate renormalisation scheme for the breakup of invariant tori in one and a half degrees of freedom Hamiltonian systems, correcting earlier results. Furthermore, when our condition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2022-07, Vol.435, p.133300, Article 133300
Hauptverfasser: Lee, Seul Bee, Marmi, Stefano, Schindler, Tanja I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give an explicit arithmetical condition which guarantees the existence of the unstable manifold of the MacKay approximate renormalisation scheme for the breakup of invariant tori in one and a half degrees of freedom Hamiltonian systems, correcting earlier results. Furthermore, when our condition is violated, we give an example of points on which the unstable manifold does not converge. •We study the renomalisation of one and a half degrees of freedom Hamiltonian systems.•A condition for the unstable manifold of the MacKay renormalisation scheme is given.•All Diophantine and also many Liouville numbers fulfil this arithmetical condition.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2022.133300