A convergence criterion for the unstable manifolds of the MacKay approximate renormalisation
We give an explicit arithmetical condition which guarantees the existence of the unstable manifold of the MacKay approximate renormalisation scheme for the breakup of invariant tori in one and a half degrees of freedom Hamiltonian systems, correcting earlier results. Furthermore, when our condition...
Gespeichert in:
Veröffentlicht in: | Physica. D 2022-07, Vol.435, p.133300, Article 133300 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an explicit arithmetical condition which guarantees the existence of the unstable manifold of the MacKay approximate renormalisation scheme for the breakup of invariant tori in one and a half degrees of freedom Hamiltonian systems, correcting earlier results. Furthermore, when our condition is violated, we give an example of points on which the unstable manifold does not converge.
•We study the renomalisation of one and a half degrees of freedom Hamiltonian systems.•A condition for the unstable manifold of the MacKay renormalisation scheme is given.•All Diophantine and also many Liouville numbers fulfil this arithmetical condition. |
---|---|
ISSN: | 0167-2789 1872-8022 |
DOI: | 10.1016/j.physd.2022.133300 |