Orthogonal polynomials, Toda lattices and Painlevé equations
We give a survey of the connection between orthogonal polynomials, Toda lattices and related lattices, and Painlevé equations (discrete and continuous). •Derivation of the Toda lattice equations using orthogonal polynomials on the real line.•Derivation of the Ablowitz–Ladik equations using orthogona...
Gespeichert in:
Veröffentlicht in: | Physica. D 2022-06, Vol.434, p.133214, Article 133214 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a survey of the connection between orthogonal polynomials, Toda lattices and related lattices, and Painlevé equations (discrete and continuous).
•Derivation of the Toda lattice equations using orthogonal polynomials on the real line.•Derivation of the Ablowitz–Ladik equations using orthogonal polynomials on the unit circle.•Discrete Painlevé equations for the recurrence coefficients of orthogonal polynomials.•Painlevé differential equations follow by combining Toda lattice equations and discrete Painlevé equations. |
---|---|
ISSN: | 0167-2789 1872-8022 |
DOI: | 10.1016/j.physd.2022.133214 |