Patterns, localized structures and fronts in a reduced model of clonal plant growth

A simplified model of clonal plant growth is formulated, motivated by observations of spatial structures in Posidonia oceanica meadows in the Mediterranean Sea. Two levels of approximation are considered for the scale-dependent feedback terms. Both take into account mortality and clonal, or vegetati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. D 2020-12, Vol.414, p.132723, Article 132723
Hauptverfasser: Ruiz-Reynés, Daniel, Martín, Luis, Hernández-García, Emilio, Knobloch, Edgar, Gomila, Damià
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simplified model of clonal plant growth is formulated, motivated by observations of spatial structures in Posidonia oceanica meadows in the Mediterranean Sea. Two levels of approximation are considered for the scale-dependent feedback terms. Both take into account mortality and clonal, or vegetative, growth as well as competition and facilitation, but the first version is nonlocal in space while the second is local. Study of the two versions of the model in the one-dimensional case reveals that both cases exhibit qualitatively similar behavior (but quantitative differences) and describe the competition between three spatially extended states, the bare soil state, the populated state, and a pattern state, and the associated spatially localized structures. The latter are of two types, holes in the populated state and vegetation patches on bare ground, and are organized within distinct snaking bifurcations diagrams. Fronts between the three extended states are studied and a transition between pushed and pulled fronts identified. Numerical simulations in one spatial dimension are used to determine front speeds and confront the predictions from the marginal stability condition for pulled fronts. •A one-dimensional nonlocal model of clonal vegetation growth is studied.•A local approximation for competitive interactions is also considered.•Homogeneous states, extended patterns and localized structures are identified.•Fronts between the different states are studied.
ISSN:0167-2789
1872-8022
DOI:10.1016/j.physd.2020.132723