Pressure-induced multiple structural phase transitions on multiferroic CaMn7O12

CaMn7O12 (CMO) is an outstanding multiferroic material known for its significant magnetically-induced electric polarization. Its strong magnetoelectric (ME) effect, i.e., electric polarization controlled via magnetic fields or vice versa, makes this material suitable for a variety of technological a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2025-01, Vol.696, p.416603, Article 416603
Hauptverfasser: Ferreira, W.C., Nonato, A., Mira, J., Sánchez-Andujar, M., Senãrís-Rodríguez, M.A., Yañez-Vilar, S., Ayala, A.P., Paschoal, C.W.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CaMn7O12 (CMO) is an outstanding multiferroic material known for its significant magnetically-induced electric polarization. Its strong magnetoelectric (ME) effect, i.e., electric polarization controlled via magnetic fields or vice versa, makes this material suitable for a variety of technological applications. In this study, we employed synchrotron X-ray powder diffraction to explore polycrystalline CMO's pressure-induced structural phase transitions (SPTs). Our results indicate that CMO undergoes two distinct pressure-induced SPTs: the first transition occurs at pressures above 7.0 GPa, changing from a rhombohedral to an orthorhombic structure, and the second occurs around 13.0 GPa, transforming into a monoclinic structure. These findings differ from the pressure-induced behavior of CMO single crystals and highlight CMO as one of the rare quadruple perovskites exhibiting multiple pressure-induced non-isostructural phase transitions. This study expands the understanding of phase stability behavior in multiferroic materials under high-pressure conditions.
ISSN:0921-4526
DOI:10.1016/j.physb.2024.416603