Phase transition in the majority rule model with the nonconformist agents

Independence and anticonformity are two types of social behaviors known in social psychology literature and the most studied parameters in the opinion dynamics model. These parameters are responsible for continuous (second-order) and discontinuous (first-order) phase transition phenomena. Here, we i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2022-12, Vol.608, p.128307, Article 128307
Hauptverfasser: Muslim, Roni, Wella, Sasfan A., Nugraha, Ahmad R.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Independence and anticonformity are two types of social behaviors known in social psychology literature and the most studied parameters in the opinion dynamics model. These parameters are responsible for continuous (second-order) and discontinuous (first-order) phase transition phenomena. Here, we investigate the majority rule model in which the agents adopt independence and anticonformity behaviors. We define the model on several types of graphs: complete graph, two-dimensional (2D) square lattice, and one-dimensional (1D) chain. By defining p as a probability of independence (or anticonformity), we observe the model on the complete graph undergoes a continuous phase transition where the critical points are pc≈0.334 (pc≈0.667) for the model with independent (anticonformist) agents. On the 2D square lattice, the model also undergoes a continuous phase transition with critical points at pc≈0.0608 (pc≈0.4035) for the model with independent (anticonformist) agents. On the 1D chain, there is no phase transition either with independence or anticonformity. Furthermore, with the aid of finite-size scaling analysis, we obtain the same sets of critical exponents for both models involving independent and anticonformist agents on the complete graph. Therefore they are identical to the mean-field Ising model. However, in the case of the 2D square lattice, the models with independent and anticonformist agents have different sets of critical exponents and are not identical to the 2D Ising model. Our work implies that the existence of independence behavior in a society makes it more challenging to achieve consensus compared to the same society with anticonformists. •Analyze order-disorder phase transition phenomena based on the majority rule model.•Overview of two types of social behaviors and their impacts on critical behavior.•Identify the universality class of the model.•Impacts of two types of social behaviors on the socio-political phenomena.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2022.128307