Multifractal dimensions and statistical properties of critical ensembles characterized by the three classical Wigner–Dyson symmetry classes

We introduce a power-law banded random matrix model for the third of the three classical Wigner–Dyson ensembles, i.e., the symplectic ensemble. A detailed analysis of the statistical properties of its eigenvectors and eigenvalues, at criticality, is presented. This ensemble is relevant for time-reve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica A 2021-07, Vol.573, p.125965, Article 125965
Hauptverfasser: Carrera-Núñez, M., Martínez-Argüello, A.M., Méndez-Bermúdez, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a power-law banded random matrix model for the third of the three classical Wigner–Dyson ensembles, i.e., the symplectic ensemble. A detailed analysis of the statistical properties of its eigenvectors and eigenvalues, at criticality, is presented. This ensemble is relevant for time-reversal symmetric systems with strong spin–orbit interaction. For the sake of completeness, we also review the statistical properties of eigenvectors and eigenvalues of the power-law banded random matrix model in the presence and absence of time reversal invariance, previously considered in the literature. Our results show a good agreement with heuristic relations for the eigenstate and eigenenergy statistics at criticality, proposed in previous studies. Therefore, we provide a full picture of the power-law banded random matrix model corresponding to the three classical Wigner–Dyson ensembles.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2021.125965