Hybrid FSO/RF and UWOC system for enabling terrestrial–underwater communication: Performance analysis
This work examines the performance of the terrestrial–underwater communication system utilizing hybrid free space optics (FSO)/radio-frequency (RF) and underwater wireless optical communication (UWOC) links. Here, the base station communicates with the underwater vehicle via a decode-and-forward (DF...
Gespeichert in:
Veröffentlicht in: | Physical communication 2025-02, Vol.68, p.102540, Article 102540 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work examines the performance of the terrestrial–underwater communication system utilizing hybrid free space optics (FSO)/radio-frequency (RF) and underwater wireless optical communication (UWOC) links. Here, the base station communicates with the underwater vehicle via a decode-and-forward (DF) based relay (buoy) in two phases. In the first phase, a hybrid FSO/RF link is used to transmit signal to the buoy, where the RF link acts as an alternative link to increase the reliability of the system, and in the next phase, the buoy forwards signal to the underwater vehicle through the UWOC link. To enhance the reliability of the RF link, the buoy is deployed with multiple antennas, and it exploits a maximal ratio combining scheme on the received RF signals. The analysis takes into consideration some primary variables that influence the system’s performance, such as atmospheric turbulence, attenuation, temperature gradient, air bubbles, water salinity variations, pointing errors, and detection techniques. Closed-form expressions for the outage probability, system throughput, and average channel capacity in terms of the Meijer-G and bivariate Fox-H functions are derived. Simulation results are presented to validate the analytical expressions and disclose valuable findings. |
---|---|
ISSN: | 1874-4907 |
DOI: | 10.1016/j.phycom.2024.102540 |