RAT selection for IoT devices in HetNets: Reinforcement learning with hybrid SMDP algorithm
Due to the increasing deployment of heterogeneous networks (HetNets), the selection of which radio access technologies (RATs) for Internet of Things (IoT) devices such as user equipments (UEs) has recently received extensive attention in mobility management research. Most of existing RAT selection m...
Gespeichert in:
Veröffentlicht in: | Physical communication 2022-10, Vol.54, p.101833, Article 101833 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the increasing deployment of heterogeneous networks (HetNets), the selection of which radio access technologies (RATs) for Internet of Things (IoT) devices such as user equipments (UEs) has recently received extensive attention in mobility management research. Most of existing RAT selection methods only optimize the selection strategies from the UE side or network side, which results in heavy network congestion, poor user experience and system utility degradation. In this paper the UE side and the network side are considered comprehensively, based on the game theory (GT) model we propose a reinforcement learning with assisted network information algorithm to overcome the crucial points. The assisted information is formulated as a semi-Markov decision process (SMDP) provided for UEs to make accurate decisions, and we adopt the iteration approach to reach the optimal policy. Moreover, we investigate the impacts of different parameters on the system utility and handover performance. Numerical results validate that our proposed algorithm can mitigate unnecessary handovers and improve system throughputs. |
---|---|
ISSN: | 1874-4907 1876-3219 |
DOI: | 10.1016/j.phycom.2022.101833 |