Emulating quantum photon-photon interactions in waveguides by double-wire media
Arrays of atoms coupled to photons propagating in a waveguide are now actively studied due to their prospects for generation and detection of quantum light. Quantum simulators based on waveguides with long-range couplings were also predicted to manifest unusual many-body quantum states. However, qua...
Gespeichert in:
Veröffentlicht in: | Photonics and nanostructures 2023-02, Vol.53, p.101104, Article 101104 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Arrays of atoms coupled to photons propagating in a waveguide are now actively studied due to their prospects for generation and detection of quantum light. Quantum simulators based on waveguides with long-range couplings were also predicted to manifest unusual many-body quantum states. However, quantum tomography for large arrays with N ≳ 20 atoms remains elusive since it requires independent access to every atom. Here, we present a novel concept for analog emulation of such systems by unveiling an analogy between the setup of waveguide quantum electrodynamics and the classical problem of an electromagnetic wave propagating in a wire metamaterial. Experimentally measuring near electromagnetic fields, we emulate the two-particle localization arising from polariton-polariton interactions in the quantum problem. Our results demonstrate the potential of wire metamaterials to visualize quantum light-matter coupling in a table-top experiment and may be applied to emulate other exotic quantum effects, such as quantum chaos, and self-induced topological states.
•localisation.•quantum-classical correspondence.•near-field mapping.•hyperbolic iso contours. |
---|---|
ISSN: | 1569-4410 1569-4429 |
DOI: | 10.1016/j.photonics.2022.101104 |