Large variations in the lithospheric thickness of northwestern India: Imprints of collisional and thermal reworking

The fold belts, which border the cratons, are the building blocks for understanding the origin and modification of older continents. The Aravalli-Delhi Fold Belt (ADFB) in northwestern India provides evidence of crustal block accretion due to continental collision, whereas Malani Igneous Suite (MIS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of the earth and planetary interiors 2024-06, Vol.351, p.107186, Article 107186
Hauptverfasser: Kumar, Niraj, Prakash, Om, Tiwari, V.M., Singh, A.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The fold belts, which border the cratons, are the building blocks for understanding the origin and modification of older continents. The Aravalli-Delhi Fold Belt (ADFB) in northwestern India provides evidence of crustal block accretion due to continental collision, whereas Malani Igneous Suite (MIS) modified with widespread magmatism. Imaging of upper mantle structure and lithospheric modifications, if any, of such regions has been intricate owing to reworking by subsequent superimposed tectono-magmatic processes. We applied a 2D modelling approach to model the lithospheric architecture along a 1000-km long WNW-SSE geotransect across northwestern India, which has been deformed in the past. Our modelling technique combines terrestrial gravity anomaly, heat flow data, satellite-based geoid, and topographic datasets using the basic premise of thermal steady-state and local isostasy. The overall 38 to 40 km thick crustal geometry underneath the Marwar Block had the maximum lithological heterogeneity. The region surrounding the MIS is characterised by 8–10 km thick high-density (2.78 g/cm3) sills deposited in the upper crust down to 9 km depth and another 10–15 km thick high-density (3.05 g/cm3) mafic mantle material near the Moho. About 42 km thick crust, including an 8 to 10-km thick high-density (3.05 g/cm3) underplated layer at its bottom, characterises the high-relief ADFB. The Vindhyan region of Bundelkhand craton is defined by a ∼ 1 km thick trap, having Moho extending at a depth of ∼40 km. The lithospheric thickness varies substantially from ∼143–168 km underneath the Marwar block, which thins to ∼135 km under the ADFB and thickens gradually to ∼150–165 km beneath the Vindhyan region. Substantial crustal density differences in distinct crustal domains, when integrated with the thin lithosphere, reinforce the concept that tectono-magmatic processes might have modified the lithosphere in NW India. [Display omitted] •A typical layered structure indicates no evidence of crustal modification underneath the Bundelkhand craton•Density inhomogeneity in Marwar Block and ADFB corresponds to crustal modification through collision and mafic intrusion.•Thermal perturbations and collisional tectonics are the twin causes of lithospheric modification in northwest India.
ISSN:0031-9201
1872-7395
DOI:10.1016/j.pepi.2024.107186