LCU-Net: A novel low-cost U-Net for environmental microorganism image segmentation

In this paper, we propose a novel Low-cost U-Net (LCU-Net) for the Environmental Microorganism (EM) image segmentation task to assist microbiologists in detecting and identifying EMs more effectively. The LCU-Net is an improved Convolutional Neural Network (CNN) based on U-Net, Inception, and concat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition 2021-07, Vol.115, p.107885, Article 107885
Hauptverfasser: Zhang, Jinghua, Li, Chen, Kosov, Sergey, Grzegorzek, Marcin, Shirahama, Kimiaki, Jiang, Tao, Sun, Changhao, Li, Zihan, Li, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel Low-cost U-Net (LCU-Net) for the Environmental Microorganism (EM) image segmentation task to assist microbiologists in detecting and identifying EMs more effectively. The LCU-Net is an improved Convolutional Neural Network (CNN) based on U-Net, Inception, and concatenate operations. It addresses the limitation of single receptive field setting and the relatively high memory cost of U-Net. Experimental results show the effectiveness and potential of the proposed LCU-Net in the practical EM image segmentation field.
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2021.107885