Circuits/cutsets duality and theoretical foundation of a structural approach to survivable logical topology mapping in IP-over-WDM optical networks

The survivable logical topology mapping (SLTM) problem in IP-over-WDM networks is to map each link in the logical topology (IP layer) onto a lightpath in the physical topology (optical layer) such that a failure of a physical link does not cause the logical topology to become disconnected. This prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical switching and networking 2022-05, Vol.44, p.100653, Article 100653
Hauptverfasser: Thulasiraman, Krishnaiyan, Lin, Tachun, Javed, Muhammad, Xue, Guoliang, Zhou, Zhili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The survivable logical topology mapping (SLTM) problem in IP-over-WDM networks is to map each link in the logical topology (IP layer) onto a lightpath in the physical topology (optical layer) such that a failure of a physical link does not cause the logical topology to become disconnected. This problem is known to be NP-complete. For this SLTM problem, two lines of investigations have been reported in the literature: the mathematical programming approach [1] and the structural approach introduced by Kurant and Thiran in [2] and pursued by Thulasiraman et al. [3,4,5]. In this paper we present an integrated treatment of the theoretical foundation of the survivable topology mapping problem presented in [3,4,5]. We believe that the algorithmic strategy developed in this paper will serve as an important phase in any strategy in the emerging area of resilient slicing of elastic optical networks. We conclude with a comparative evaluation, based on simulations, of the different algorithmic strategies developed in the paper, and also pointing to applications beyond IP-over-WDM optical networks, in particular, survivable design of inter-dependent multi-layer cyber physical systems such as smart power grids.
ISSN:1573-4277
1872-9770
DOI:10.1016/j.osn.2021.100653