A new double-line waveguide architecture for photonic applications using fs laser writing in Nd3+ doped GeO2-PbO glasses

A new double-line waveguide architecture produced in Nd3+ doped GeO2-PbO glasses is presented for photonic applications. The waveguides are written directly into Nd3+ doped GeO2-PbO glasses using a Ti:Sapphire femtosecond (fs) laser, operating at 800 nm, delivering 30 fs pulses at 10 kHz repetition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical materials 2022-07, Vol.129, p.112495, Article 112495
Hauptverfasser: Bordon, Camila D.S., Dipold, Jessica, Freitas, Anderson Z., Wetter, Niklaus U., de Rossi, Wagner, Kassab, Luciana R.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new double-line waveguide architecture produced in Nd3+ doped GeO2-PbO glasses is presented for photonic applications. The waveguides are written directly into Nd3+ doped GeO2-PbO glasses using a Ti:Sapphire femtosecond (fs) laser, operating at 800 nm, delivering 30 fs pulses at 10 kHz repetition rate and writing speed of 0.5 mm/s. Two parallel lines form a dual-waveguide each line being a result of either 4 or 8 superimposed lines. Results of propagation losses, M2 beam quality factor at 632 and 1064 nm, refractive index change, and relative gain at the signal wavelength (1064 nm) are presented. Structural changes, due to laser writing process were investigated by Raman spectroscopy. The observed near-field pattern image showed good waveguiding quality, consisting of a single, circular lobe. X,y-symmetrical guiding for both waveguides was observed. The relative gain reached 4.5 and 6.0 dB/cm for 4 and 8 superimposed lines, respectively, for 420 mW of 808 nm pumping. Propagation losses were 0.89 and 0.44 dB/cm, for 4 and 8 superimposed lines, respectively, leading to positive internal gain of 3.6 and 5.56 dB/cm. The results obtained in the present work demonstrate that this new double line architecture for Nd3+ doped GeO2-PbO glasses is promising for the fabrication of integrated amplifiers, lossless components and lasers. •Double-line waveguide written in Nd3+ doped GeO2-PbO glasses: operation at 1.64 μm.•New technique: two parallel lines with each line formed by 4 or 8 superimposed lines.•X,y-symmetrical guiding for both waveguides.•Measured refractive index changes of the order of 10−3.•Internal gain: 3.6 and 5.56 dB/cm for 4 and 8 superimposed lines, respectively.
ISSN:0925-3467
1873-1252
DOI:10.1016/j.optmat.2022.112495