Understanding the impact of SrI2 additive on the properties of Sn-based halide perovskites
Organic-inorganic halide perovskites have been identified as favorable candidates for the next generation of photovoltaics. Adding alkali metal halides to perovskite films has been shown to be a viable option to improve the perovskite film quality and to modulate their fundamental properties. In thi...
Gespeichert in:
Veröffentlicht in: | Optical materials 2022-01, Vol.123, p.111806, Article 111806 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic-inorganic halide perovskites have been identified as favorable candidates for the next generation of photovoltaics. Adding alkali metal halides to perovskite films has been shown to be a viable option to improve the perovskite film quality and to modulate their fundamental properties. In this work, we perform optical and electron-beam based characterizations of mixed Sn/Pb based perovskite films to investigate the effect of the addition of the alkaline metal halide SrI2. By analyzing structural (X-ray diffraction), morphological (Scanning Electron Microscopy), optical (photoluminescence), and chemical properties (X-ray photoelectron spectroscopy), we show a complex interplay of effects upon addition of Sr2+ into the perovskite solution. Low concentrations of Sr2+ increases lattice strain, which hints at incorporation of the additive into the perovskite lattice and improves the film optoelectronic properties. As the additive concentration increases beyond 0.5 mol %, microstrain decreases. At concentrations >0.5 mol %, Sr2+ induces significant reduction of the average domain size, which impacts both structural and optical properties of the perovskite film.
•Improvements in the structural properties upon addition of SrI2.•Increase in electronic quality of tin-based perovskites.•Formation of a metal oxide layer on the surface of the perovskites. |
---|---|
ISSN: | 0925-3467 1873-1252 |
DOI: | 10.1016/j.optmat.2021.111806 |