Self-bias Mo–Sb–Ga multilayer photodetector encompassing ultra-broad spectral response from UV–C to IR–B
•Ultra-broadband photodetector of multi-junction structure of MoS2, Sb2Se3, and GaN.•The device demonstrates exceptional sensitivity across UV–C to IR–B wavelengths.•Photo-responsivity of 665 mAW−1 in photovoltaic mode and 3.89 × 105 mAW−1 in photoconductive mode.•TCAD simulations enhance understand...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2025-02, Vol.181, p.111705, Article 111705 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Ultra-broadband photodetector of multi-junction structure of MoS2, Sb2Se3, and GaN.•The device demonstrates exceptional sensitivity across UV–C to IR–B wavelengths.•Photo-responsivity of 665 mAW−1 in photovoltaic mode and 3.89 × 105 mAW−1 in photoconductive mode.•TCAD simulations enhance understanding of the device’s behaviour.
Achieving an ultra-broad spectral response in a self-bias detector is a formidable challenge that persists in optoelectronics that necessitates innovative solutions. We propose a unique ultra-broadband photodetecting device, utilizing a multilayer structure comprising Molybdenum Di-sulfide (MoS2), Antimony Tri-selenide (Sb2Se3), and Gallium Nitride (GaN), which exhibits the unique capability of detecting photons without applied bias. The fabricated device demonstrates exceptional sensitivity to a wide range of illumination wavelengths, spanning from ultraviolet–C (UV–C) to infrared–B (IR–B). The design detector displays the highest photo-responsivity of 665 mAW−1 in photovoltaic mode and 3.89 × 105 mAW−1 in photoconductive mode. The designed detector also exhibits a minimal dark current of 90 nA and an extremely weak signal detection capability of ∼12 femto watt-hertz−1/2 at 6 V bias. Additionally, the thermal stability of the MoS2-Sb2Se3-GaN (Mo-Sb-Ga) multi-layer-based self-bias detector was explored. Under the self-bias conditions, the photodetector exhibits a stable behavior up to 250°C with a peak responsivity of 635 mAW−1. The thermal durability of the self-bias ultra-broadband photodetector indicates excellent potential for developing futuristic optoelectronic devices. Further, the performance of the developed detector was examined using Technology Computer-Aided Design (TCAD) simulations, providing valuable insights into the device behavior and the transport of photo-generated carriers, enhancing our understanding of the device operation and enabling performance optimization for diverse applications. |
---|---|
ISSN: | 0030-3992 |
DOI: | 10.1016/j.optlastec.2024.111705 |