Single-shot wavelength meter on a chip based on exponentially increasing delays and in-phase quadrature detection

•Silicon photonics chip with ridge waveguides.•Chip-scale device for instantaneous measurement of wavelength.•High precision and accuracy over a nominal bandwidth of 40 nm in the O-band.•Mach–Zehnder interferometer structure with exponentially increasing OPDs.•Hydrogen fluoride gas cell for traceabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and lasers in engineering 2024-07, Vol.178, p.108163, Article 108163
Hauptverfasser: Coggrave, C.R., Ruiz, P.D., Pallikarakis, C.A., Huntley, J.M., Du, H., Banakar, M., Yan, X., Tran, D.T., Littlejohns, C.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Silicon photonics chip with ridge waveguides.•Chip-scale device for instantaneous measurement of wavelength.•High precision and accuracy over a nominal bandwidth of 40 nm in the O-band.•Mach–Zehnder interferometer structure with exponentially increasing OPDs.•Hydrogen fluoride gas cell for traceable wavelength measurements. A solid-state wavelength measuring instrument based on a SiO2 photonics platform is presented. The chip-scale wavemeter device has no moving parts and allows instantaneous wavelength measurement with high precision and accuracy over a nominal bandwidth of 40 nm in the O-band. The wavemeter design is based on multimode interferometer (MMI) couplers and a multi-band Mach–Zehnder interferometer (MZI) structure with exponentially increasing optical path differences. Design of the MMI couplers is supported by simulations using the Finite-Difference Time-Domain (FDTD) method. A hydrogen fluoride gas cell is used in conjunction with the chip-scale wavemeter to determine the wavelength relative to traceable absorption lines. This approach does not rely on knowledge of the effective or group refractive indices to estimate wavelength. The fabrication, experimental evaluation and calibration of the device are discussed. Observed performance indicates a spectral support of 37.378 nm (i.e., frequency bandwidth 6.608 THz), with a resolution of 6.1 pm (1.1 GHz) at 1σ, corresponding to 1 part in 6,127.
ISSN:0143-8166
1873-0302
DOI:10.1016/j.optlaseng.2024.108163