Infrared and visible image fusion based on iterative differential thermal information filter

•An iterative differential thermal information filter-based infrared and visible image fusion method is proposed.•A multiple difference rolling guidance filter feature fusion method is designed to perform feature enhancement on visible images.•A dynamic threshold thermal information filter is develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics and lasers in engineering 2022-01, Vol.148, p.106776, Article 106776
Hauptverfasser: Chen, Yanling, Cheng, Lianglun, Wu, Heng, Mo, Fei, Chen, Ziyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•An iterative differential thermal information filter-based infrared and visible image fusion method is proposed.•A multiple difference rolling guidance filter feature fusion method is designed to perform feature enhancement on visible images.•A dynamic threshold thermal information filter is developed to separate and enhance the detailed information of the visible image.•The proposed method may find potential applications in night monitoring, electric wire detection, and medical diagnosis. We propose an infrared and visible image fusion method based on an iterative differential thermal information filter to generate a fusion image with the salient thermal targets of the infrared image and detailed information of the visible image. Firstly, we enhance thermal information of infrared images using a dynamic threshold thermal information filter. Then, we use the multiple difference rolling guidance filter feature fusion method to separate and enhance the detailed information of the visible image. Finally, we gain the fusion image by a weighted-averaging strategy. The advantages and effectiveness of the proposed method are experimentally demonstrated by qualitatively and quantitatively comparing with the deep learning and non deep learning-based methods.
ISSN:0143-8166
1873-0302
DOI:10.1016/j.optlaseng.2021.106776