DNA-PK inhibition enhances gene editing efficiency in HSPCs for CRISPR-based treatment of X-linked hyper IgM syndrome
Targeted gene editing to restore CD40L expression via homology-directed repair (HDR) in CD34+ hematopoietic stem and progenitor cells (HSPCs) represents a potential long-term therapy for X-linked hyper IgM syndrome. However, clinical translation of HSPC editing is limited by inefficient long-term en...
Gespeichert in:
Veröffentlicht in: | Molecular therapy. Methods & clinical development 2024-09, Vol.32 (3), p.101297, Article 101297 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Targeted gene editing to restore CD40L expression via homology-directed repair (HDR) in CD34+ hematopoietic stem and progenitor cells (HSPCs) represents a potential long-term therapy for X-linked hyper IgM syndrome. However, clinical translation of HSPC editing is limited by inefficient long-term engraftment of HDR-edited HSPCs. Here, we ameliorate this issue by employing a small-molecule inhibitor of DNA-PKcs, AZD7648, to bias DNA repair mechanisms to facilitate HDR upon CRISPR SpCas9-based gene editing. Using AZD7648 treatment and a clinically relevant HSPC source, mobilized peripheral blood CD34+ cells, we achieve ∼60% HDR efficiency at the CD40LG locus and enhanced engraftment of HDR-edited HSPCs in primary and secondary xenotransplants. Specifically, we observed a 1.6-fold increase of HDR-edited long-term HSPCs in primary transplant recipients without disturbing chimerism levels or differentiation capacity. As CD40L is primarily expressed in T cells, we demonstrate T cell differentiation from HDR-edited HSPCs in vivo and in artificial thymic organoid cultures, and endogenously regulated CD40L expression following activation of in-vivo-derived CD4+ T cells. Our combined findings demonstrate HDR editing at the CD40LG locus at potentially clinically beneficial levels. More broadly, these data support using DNA-PKcs inhibition with AZD7648 as a simple and efficacious addition to HSPC editing platforms.
[Display omitted]
Pugliano and colleagues demonstrate enhanced HDR editing and engraftment of edited hematopoietic stem cells via addition of DNA-PK inhibition during ex vivo editing. They use this approach to improve efficiency of HDR-based editing therapy for X-linked hyper IgM syndrome, an immune disorder caused by mutations in the CD40LG gene. |
---|---|
ISSN: | 2329-0501 2329-0501 |
DOI: | 10.1016/j.omtm.2024.101297 |