Scratched surface: Quantifying the impact and evaluating underwater cleaning efficacy on fouling release coatings

Fouling release coatings (FRCs) can become damaged and diminished over exposure. Quantifying adverse effect of scratches on FRCs is crucial for damage control. This study investigated the effect of four pre-defined scratches on the re-fouling of a silicone-based FRC (SiFR) undergoing underwater clea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2025-01, Vol.316, p.120013, Article 120013
Hauptverfasser: Lin, Shujie, Bi, Huichao, Weinell, Claus Erik, Dam-Johansen, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fouling release coatings (FRCs) can become damaged and diminished over exposure. Quantifying adverse effect of scratches on FRCs is crucial for damage control. This study investigated the effect of four pre-defined scratches on the re-fouling of a silicone-based FRC (SiFR) undergoing underwater cleaning utilizing a novel automated underwater cleaning system (AUCS). Moreover, barnacle adhesion and coating detachment formation of scratched SiFR were evaluated. Field testing at the CoaST Maritime Test Centre (CMTC) demonstrated that the scratches varying in depths and widths can significantly affect the biofouling behavior and cleaning efficiency of SiFR surface. For wide scratches (i.e. 3-mm-wide), hard fouling (e.g. barnacles, mussels) was more prone to accumulate, and underwater cleaning was effective in preventing hard fouling but not soft fouling on SiFR surface. Additionally, the re-fouling and cleaning difficulty of hard fouling increased with the depth of wide scratches. For narrow scratches (i.e.
ISSN:0029-8018
DOI:10.1016/j.oceaneng.2024.120013