Numerical simulations of the ONRT ship maneuvering in calm water and head waves with the partially rotating grid method

This research delves into the maneuverability aspects of a model-scale ONRT surface combatant ship using Computational Fluid Dynamics (CFD) simulations. A key aspect of this study is the comparison of the actuator disc (AD) model and the partially rotating grid (P) method in calm water, complemented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2024-11, Vol.312, p.119056, Article 119056
Hauptverfasser: Đurasević, Sanijo, Gatin, Inno, Jasak, Hrvoje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research delves into the maneuverability aspects of a model-scale ONRT surface combatant ship using Computational Fluid Dynamics (CFD) simulations. A key aspect of this study is the comparison of the actuator disc (AD) model and the partially rotating grid (P) method in calm water, complemented by an in-depth analysis of the P method for simulations in waves. Utilizing these methods, the study investigates the performance of the ship in propeller open water, self-propulsion, and complex maneuvers like turning circle and zig-zag. Key findings highlight the superiority of the P method in closely aligning with experimental data, particularly in capturing complex dynamics of ship maneuvers. This research underscores the critical role of propeller side force in maneuvering simulations, a factor often neglected in simpler models like the AD. Maneuvers in head waves are also examined, revealing the nuanced effects of wave orientation on the stability and maneuverability of the ship. This study highlights the effectiveness of CFD in simulating ship maneuvers and the need for ongoing refinement of these techniques to improve accuracy and reliability. •Partially rotating grid method outperforms actuator disc in maneuvers.•Maneuver simulations in waves conducted with partially rotating grid only.•Emphasis on propeller side force’s influence in maneuvering.•Close correlation of partially rotating grid results with experimental data.•Notable sway velocity and yaw rate oscillations in wave scenarios.
ISSN:0029-8018
DOI:10.1016/j.oceaneng.2024.119056