Magnitude sensitivity analysis for parameter identification applied to an autonomous underwater vehicle

A novel “identifiability” technique, named magnitude sensitivity analysis, is presented to determine identifiable parameters within a dataset. Parameters with high sensitivity can be successfully identified, whereas parameters with low sensitivity can be omitted, reducing system complexity. The tech...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2024-11, Vol.311, p.118918, Article 118918
Hauptverfasser: Elmezain, Mohamed, El-Bayoumi, Gamal, Elhadidi, Basman, Mohamady, Osama
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel “identifiability” technique, named magnitude sensitivity analysis, is presented to determine identifiable parameters within a dataset. Parameters with high sensitivity can be successfully identified, whereas parameters with low sensitivity can be omitted, reducing system complexity. The technique is less computationally intensive compared to other published methods, preserves the physical nature of parameters, and is applicable in real-time analysis. Verification of the technique was tested for a simulated mass–spring–damper model with a step and sinusoidal forcing inputs to demonstrate the determination of identifiable parameters from different datasets. For the two forcing scenarios, magnitude sensitivity analysis predicted parameters with high and low sensitivity, which were then estimated using an extended Kalman filter. High sensitivity parameters yielded values with errors as low as 0.4%, whereas low sensitivity parameters yielded values with errors up to 533%. The technique was then applied to experimental data measured from an autonomous underwater vehicle (AUV) undergoing pitch maneuvers. The magnitude sensitivity analysis was used to reduce the nonlinear system model governing the AUV before proceeding with the estimation of the high sensitivity parameters. Results conclude that the estimation of the high sensitivity parameter deviated by 4% compared to the initial guess parameter from a numerical simulation. •Proposes magnitude sensitivity method for identifiability analysis.•Quantitatively classifies parameters by identifiability.•Preserves parameters physical nature.•Does not require multiple simulations as in common methods.•Applicable to experimental data.
ISSN:0029-8018
DOI:10.1016/j.oceaneng.2024.118918