Autonomous navigation decision-making for ships in complex estuarine waters: Methodology and validation
This study focused on key scientific issues in the autonomous navigation for ships, including constraints on environmental and navigation rules, limitations on ship maneuverability, and collision avoidance mechanisms, to address the challenges of autonomous navigation decision-making for ships in co...
Gespeichert in:
Veröffentlicht in: | Ocean engineering 2024-10, Vol.309, p.118474, Article 118474 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study focused on key scientific issues in the autonomous navigation for ships, including constraints on environmental and navigation rules, limitations on ship maneuverability, and collision avoidance mechanisms, to address the challenges of autonomous navigation decision-making for ships in complex estuarine waters and validate the feasibility and accuracy of the proposed methodology. A novel autonomous navigation decision-making method that can dynamically adapt to residual errors in a system and the random movements of target ships was proposed. The predictive model used to calculate decision plans and the simulation model used to execute and validate decision plans were separated. Environmental constituent elements were classified and modeled to digitize the environment. A navigation scenario was constructed based on the fusion of virtual and real information. The control and process prediction methods were proposed based on the nonlinear ship maneuvering characteristics. Navigation rules were summarized, analyzed, and integrated into the decision-making and execution process. The collision avoidance mechanism and calculation method for feasible course and speed range were studied. Simulation experiments were conducted using the North Channel of the Yangtze River Estuary as an example. The results demonstrated that the proposed method can accurately make autonomous navigation decisions, safely avoid collisions, and timely track routes in nearly realistic scenarios.
•A virtual-real fusion scene is constructed based on real historical AIS data and ship parameters.•A dynamic adaptive autonomous navigation framework based on model separation and sequential rolling is designed.•The autonomous navigation decision-making method is validated in a reality-virtual fusion navigation scenario. |
---|---|
ISSN: | 0029-8018 1873-5258 |
DOI: | 10.1016/j.oceaneng.2024.118474 |