Self-catalysed breakdown of titanate nanotubes by graphitic carbon nitride resulting in enhanced hydrogen production

Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production effi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Next materials 2025-04, Vol.7, p.100358, Article 100358
Hauptverfasser: Liu, Ruochen, Zhao, Shiqi, Cheng, Xiaorong, Lu, Luhua, Liu, Xiyang, Liu, Tianqi, Dong, Bochao, Dawson, Graham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production efficiency of 2.3 mmolg−1h−1, much improved compared to GCN, which achieved a rate of 0.56 mmolg−1h−1. We can conclude that pyrolysis of urea to carbon nitride also self catalyses the breakdown of TiNT into anatase TiO2 nanoparticles, resulting in a nanocomposite material comprising TiO2 and heterojunctions with GCN. After heating and modification the TiO2 shows a conduction band edge with a more negative potential than the H+/H2 potential, which along with the ideal position of the GCN CB edge facilitates hydrogen production under light irradiation. This novel method can be viewed as a general method for improving catalysis synthesis and design, whilst simultaneously reducing the complexity and energy footprint of active catalyst synthesis. [Display omitted]
ISSN:2949-8228
2949-8228
DOI:10.1016/j.nxmate.2024.100358