Self-catalysed breakdown of titanate nanotubes by graphitic carbon nitride resulting in enhanced hydrogen production
Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production effi...
Gespeichert in:
Veröffentlicht in: | Next materials 2025-04, Vol.7, p.100358, Article 100358 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efficient design of a photocatalyst is an important step in realizing real world applications. In this work, using in-situ catalysis we have prepared and investigated a titanate nanotube (TiNT)/ graphitic carbon nitride nanocomposite, which after optimization shows excellent hydrogen production efficiency of 2.3 mmolg−1h−1, much improved compared to GCN, which achieved a rate of 0.56 mmolg−1h−1. We can conclude that pyrolysis of urea to carbon nitride also self catalyses the breakdown of TiNT into anatase TiO2 nanoparticles, resulting in a nanocomposite material comprising TiO2 and heterojunctions with GCN. After heating and modification the TiO2 shows a conduction band edge with a more negative potential than the H+/H2 potential, which along with the ideal position of the GCN CB edge facilitates hydrogen production under light irradiation. This novel method can be viewed as a general method for improving catalysis synthesis and design, whilst simultaneously reducing the complexity and energy footprint of active catalyst synthesis.
[Display omitted] |
---|---|
ISSN: | 2949-8228 2949-8228 |
DOI: | 10.1016/j.nxmate.2024.100358 |