Ultralocal Lax connection for para-complex Z T -cosets

We consider $\sigma$-models on para-complex $\mathbb{Z}_T$-cosets, which are analogues of those on complex homogeneous target spaces considered recently by D. Bykov. For these models, we show the existence of a gauge-invariant Lax connection whose Poisson brackets are ultralocal. Furthermore, its li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear physics. B 2019-12, Vol.949, p.114821, Article 114821
Hauptverfasser: Delduc, F., Kameyama, T., Lacroix, S., Magro, M., Vicedo, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider $\sigma$-models on para-complex $\mathbb{Z}_T$-cosets, which are analogues of those on complex homogeneous target spaces considered recently by D. Bykov. For these models, we show the existence of a gauge-invariant Lax connection whose Poisson brackets are ultralocal. Furthermore, its light-cone components commute with one another in the sense of Poisson brackets. This extends a result of O. Brodbeck and M. Zagermann obtained twenty years ago for hermitian symmetric spaces.
ISSN:0550-3213
DOI:10.1016/j.nuclphysb.2019.114821