Ultralocal Lax connection for para-complex Z T -cosets
We consider $\sigma$-models on para-complex $\mathbb{Z}_T$-cosets, which are analogues of those on complex homogeneous target spaces considered recently by D. Bykov. For these models, we show the existence of a gauge-invariant Lax connection whose Poisson brackets are ultralocal. Furthermore, its li...
Gespeichert in:
Veröffentlicht in: | Nuclear physics. B 2019-12, Vol.949, p.114821, Article 114821 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider $\sigma$-models on para-complex $\mathbb{Z}_T$-cosets, which are analogues of those on complex homogeneous target spaces considered recently by D. Bykov. For these models, we show the existence of a gauge-invariant Lax connection whose Poisson brackets are ultralocal. Furthermore, its light-cone components commute with one another in the sense of Poisson brackets. This extends a result of O. Brodbeck and M. Zagermann obtained twenty years ago for hermitian symmetric spaces. |
---|---|
ISSN: | 0550-3213 |
DOI: | 10.1016/j.nuclphysb.2019.114821 |