Solvability of the fractional hyperbolic Keller–Segel system

We study a new nonlocal approach to the mathematical modelling of the chemotaxis problem, which describes the random motion of a certain population due to a substance concentration. Considering the initial–boundary value problem for the fractional hyperbolic Keller–Segel model, we prove the solvabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2023-12, Vol.74, p.103957, Article 103957
Hauptverfasser: Huaroto, Gerardo, Neves, Wladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a new nonlocal approach to the mathematical modelling of the chemotaxis problem, which describes the random motion of a certain population due to a substance concentration. Considering the initial–boundary value problem for the fractional hyperbolic Keller–Segel model, we prove the solvability of the problem. The solvability result relies mostly on fractional calculus and kinetic formulation of scalar conservation laws.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2023.103957