A diffusive Lotka–Volterra model with Robin boundary condition and sign-changing growth rates in time-periodic environment
In this paper, a Lotka–Volterra model with Robin and free boundary conditions is considered in the heterogeneous time-periodic environment. We mainly consider the changes of local growth rates of native and invasive species that might be negative in some large regions. We study the spreading–vanishi...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2023-08, Vol.72, p.103856, Article 103856 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a Lotka–Volterra model with Robin and free boundary conditions is considered in the heterogeneous time-periodic environment. We mainly consider the changes of local growth rates of native and invasive species that might be negative in some large regions. We study the spreading–vanishing dichotomy. When vanishing occurs, a native species cannot spread successfully as time goes to infinity. However, for an invasive species, in the long run, either it will go extinct or converge to the unique positive solution of time-periodic boundary value problem of logistic equation. When spreading occurs, both native and invasive species have upper and lower bounds. We also obtain the criteria for spreading and vanishing, and estimate of the asymptotic spreading speed. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2023.103856 |