Blow-up for a pseudo-parabolic equation with variable nonlinearity depending on (x,t) and negative initial energy

We study the Dirichlet problem for the pseudo-parabolic equation ut−diva(x,t)|∇u|p(x,t)−2∇u−Δut=b(x,t)|u|q(x,t)−2uin the cylinder QT=Ω×(0,T), where Ω⊂Rd is a sufficiently smooth domain. The positive coefficients a, b and the exponents p≥2, q>2 are given Lipschitz-continuous functions. The functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2023-06, Vol.71, p.103837, Article 103837
Hauptverfasser: Antontsev, Stanislav, Kuznetsov, Ivan, Shmarev, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the Dirichlet problem for the pseudo-parabolic equation ut−diva(x,t)|∇u|p(x,t)−2∇u−Δut=b(x,t)|u|q(x,t)−2uin the cylinder QT=Ω×(0,T), where Ω⊂Rd is a sufficiently smooth domain. The positive coefficients a, b and the exponents p≥2, q>2 are given Lipschitz-continuous functions. The functions a, p are monotone decreasing, and b, q are monotone increasing in t. It is shown that there exists a positive constant M=M(|Ω|,sup(x,t)∈QTp(x,t),sup(x,t)∈QTq(x,t)), such if the initial energy is negative, E(0)=∫Ωa(x,0)p(x,0)|∇u0(x)|p(x,0)−b(x,0)q(x,0)|u0(x)|q(x,0)dx
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2023.103837