Large time behavior of solution to a fully parabolic chemotaxis system with singular sensitivity and logistic source

This paper presents the large time behavior of solution to the fully parabolic chemotaxis system with singular sensitivity and logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(uvκ∇v)+μu−μu2,x∈Ω,t>0,vt=Δv−v+u,x∈Ω,t>0,with homogeneous Neumann boundary condition in a convex smooth bounded domain Ω⊂Rn, n≥2, wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2023-02, Vol.69, p.103746, Article 103746
Hauptverfasser: He, Qiurong, Zhao, Jie, Xiao, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the large time behavior of solution to the fully parabolic chemotaxis system with singular sensitivity and logistic source ut=∇⋅(D(u)∇u)−χ∇⋅(uvκ∇v)+μu−μu2,x∈Ω,t>0,vt=Δv−v+u,x∈Ω,t>0,with homogeneous Neumann boundary condition in a convex smooth bounded domain Ω⊂Rn, n≥2, where χ>0, μ>0 and κ∈(0,12)∪(12,1), D(u) is supposed to satisfy the following property D(u)≥(u+1)αwithα>0.One can find a positive constant m∗ such that ∫Ωu≥m∗for allt≥0. Apart from that, it is shown that the solution is globally bounded. Furthermore, it is asserted that the solution exponentially converges to the steady state (1,1) as t→∞.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2022.103746