Qualitative properties of pulsating fronts for reaction–advection–diffusion equations in periodic excitable media
In this paper, we study the pulsating fronts of reaction–advection-diffusion equations with two types of nonlinear term in periodic excitable media. Firstly, for the case with combustion nonlinearity, the unique front is proved to decay exponentially when it approaches the unstable limiting state. S...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2022-02, Vol.63, p.103418, Article 103418 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the pulsating fronts of reaction–advection-diffusion equations with two types of nonlinear term in periodic excitable media. Firstly, for the case with combustion nonlinearity, the unique front is proved to decay exponentially when it approaches the unstable limiting state. Secondly, for the degenerate monostable type nonlinearity, it is shown that the front with critical speed is unique, monotone and decays exponentially at negative end, while the fronts of noncritical speeds decay to zero non-exponentially. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2021.103418 |