Qualitative properties of pulsating fronts for reaction–advection–diffusion equations in periodic excitable media

In this paper, we study the pulsating fronts of reaction–advection-diffusion equations with two types of nonlinear term in periodic excitable media. Firstly, for the case with combustion nonlinearity, the unique front is proved to decay exponentially when it approaches the unstable limiting state. S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2022-02, Vol.63, p.103418, Article 103418
Hauptverfasser: Bu, Zhen-Hui, He, Jun-Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the pulsating fronts of reaction–advection-diffusion equations with two types of nonlinear term in periodic excitable media. Firstly, for the case with combustion nonlinearity, the unique front is proved to decay exponentially when it approaches the unstable limiting state. Secondly, for the degenerate monostable type nonlinearity, it is shown that the front with critical speed is unique, monotone and decays exponentially at negative end, while the fronts of noncritical speeds decay to zero non-exponentially.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2021.103418